Computing limn+p=n+1kn1p\lim\limits_{n\to+\infty}\sum_{p=n+1}^{kn} \frac1 p for k>1k > 1

Prove that

x>0,11+x<ln(1+x)ln(x)<1x. \forall x>0,\quad \frac{1}{1+x}< \ln(1+x)-\ln(x)<\frac1 x.

Deduce, for kN{1}k\in \mathbb{N}\setminus\{1\},

limn+p=n+1kn1p.\lim\limits_{n\to+\infty}\sum_{p=n+1}^{kn}\frac{1}{p}.

Show Answer:
Previous:
Is the endomorphism P(X)P(X+1)P(X)P(X)\mapsto P(X+1)-P(X) diagonalizable?
Next:
Nilpotent matrix and trace
Mean Value Theorem